

US005156613A

United States Patent [19]

[54] COLLAGEN WELDING DOD MATERIAL

Sawyer

Patent Number: [11]

5,156,613

Date of Patent: [45]

Oct. 20, 1992

[34]	COLLAGEN WELDING ROD MATERIAL 16		
	FOR USE	No. 5, p	
[75]	Inventor:	Philip N. Sawyer, Brooklyn, N.Y.	Libutti e
[73]	Assignee:	Interface Biomedical Laboratories Corp., Brooklyn, N.Y.	Surgical Oz et al
[21]	Appl. No.:	654,860	Atheros Journal
[22]	Filed:	Feb 13, 1991	(1990).

Feb. 13, 1991

Int. Cl.⁵ A61B 17/00 **U.S. Cl.** 606/213; 606/8; 606/214; 606/40; 128/898

Field of Search 606/213, 214, 215, 3, 606/8, 27; 128/898; 514/801

[56] References Cited

U.S. PATENT DOCUMENTS

3,527,224	9/1970	Rabinowitz 606/214
3,742,955	7/1973	Battista 606/214
4,122,853	10/1978	Smith 128/303.1
4,238,480	12/1980	Sawyer 424/177
4,638,800	1/1987	Michel 606/14
4,672,969	6/1987	Dew 606/3
4,854,320	8/1989	Dew et al 606/9
4.878,492	11/1989	Sinofsky et al 128/303.1
4,929,246	5/1990	Sinofsky 606/3
4,930,504	6/1990	Diamantopoulas et al 606/3
5,021,452	6/1991	Labbé et al 514/474

OTHER PUBLICATIONS

- J. Pachence et al., "Collagen: Its Place in the Medrail Device Industry", Jan. 1987.
- J. Komerska et al., "Collagen Films as Test Surfaces for Skin-Contact Pressure Adhesives" 1990.
- S. Shapiro et al., "Microvascular End-To-Side Arterial Anastomosis Using the Nd:YAG Laser", Neurosur-
- gery, vol. 25, No. 4 (1989) pp. 584-589. T. Benke et al., "Comparative Study of Suture and Laser-Assisted Anastomoses in Rat Sciatic Nerves", Lasers in Surgery and Medicine, 9:602-615 (1989).

Popp et al., "Welding of Gallbladder Tissue with a Pulsed 2.15 μ m Thulium- Holmium - Chromium: YAG Laser", Lasers in Surgery and Medicine, 9:155-159

Oz et al., "Tissue Soldering by Use of Indocyanine Green Dye-Enhanced Fibrinogin with the Near Infrared Diode Laser", Journal of Vascular Surgery, vol. 11, pp. 718-725 (1990).

et al., "Canine Colonic Anastomoses Reinforced ye-Enhanced Fibrinogen and a Diode Laser", il Endoscopy, vol. 4, No. 2, pp. 97-99 (1990). al., "Effects of a 2.15 - Micron Laser on Human scherotic Xenografts in Vivo", Angiology, The l of Vascular Diseases, vol. 41, pp. 772-776

Bass et al., "Anastomosis of Biliary Tissue with High-Frequency Electrical Diathermy", Surgical Endoscopy, vol. 4, No. 2, pp. 94-96 (1990).

Oz et al., "A Fiberoptic Compatable Midinfrared Laser with CO₂ Laser-Like Effect: Application to Atherosclerosis", Journal of Surgical Research, vol. 17, No. 6, pp. 493-501 (1989).

Oz et al., "Strength of Laser Vascular Fusion: Preliminary Observations on the Role of Thrombus", Lasers in Surgery and Medicine, vol. 10, pp. 393-395 (1990).

Chuck et al., "Dye-Enhanced Laser Tissue Welding" Lasers in Surgery and Medicine, vol. 9, pp. 471-477

Oz et al., "In Vitro Comparison of Thulium-Holmium-Chromium: YAG AND Argon Ion Lasers for Welding of Biliary Tissue", Lasers in Surgery and Medicine, vol. 9, pp. 248-253 (1989).

Treat et al., "Preliminary Evaluation of a Pulsed 2.15 μm Laser System for Fiberoptic Endoscopic Surgery", Lasers in Surgery and Medicine, vol. 8, pp. 322-326

Bass et al., "Sutureless Microvascular Anastomosis Using the THC: YAG Laser: a Preliminary Report", Microsurgery, vol. 10, pp. 189-193 (1989).

Primary Examiner-Stephen C. Pellegrino Assistant Examiner-Gary Jackson Attorney, Agent, or Firm-Pennie & Edmonds

[57] **ABSTRACT**

A method of joining or reconstructing biological tissue which comprises applying optical energy to the biological tissue while providing a collagen filler material thereto; denaturing the collagen filler material and biological tissue with the optical energy to cause joining of the collagen filler material and biological tissue, thus joining or reconstructing such tissue.

20 Claims, 2 Drawing Sheets

